Interactive Theorem Provers from the perspective of Isabelle/Isar
نویسنده
چکیده
Interactive Theorem Provers have a long tradition, going back to the 1970s when interaction was introduced as a concept in computing. The main provers in use today can be traced back over 20–30 years of development. As common traits there are usually strong logical systems at the bottom, with many layers of add-on tools around the logical core, and big applications of formalized mathematics or formal methods. There is a general attitude towards flexibility and open-endedness in the combination of logical tools: typical interactive provers use automated provers and dis-provers routinely in their portfolio. The subsequent exposition of interactive theorem proving (ITP) takes Isabelle/Isar as the focal point to explain concepts of the greater “LCF family”, which includes Coq and various HOL systems. Isabelle itself shares much of the relatively simple logical foundations of HOL, but follows Coq in the ambition to deliver a sophisticated system to end-users without requiring self-assembly of individual parts. Isabelle today is probably the most advanced proof assistant concerning its overall architecture and extra-logical infrastructure. The “Isar” aspect of Isabelle refers first to the structured language for human-readable and machine-checkable proof documents, but also to the Isabelle architecture that emerged around the logical framework in the past 10 years. Thus “Isabelle/Isar” today refers to an advanced proof assistant with extra structural integrity beyond the core logical framework, with native support for parallel proof processing and asynchronous interaction in its Prover IDE (PIDE).
منابع مشابه
Automation for interactive proof: First prototype
Interactive theorem provers require too much effort from their users. We have been developing a system in which Isabelle users obtain automatic support from automatic theorem provers (ATPs) such as Vampire and SPASS. An ATP is invoked at suitable points in the interactive session, and any proof found is given to the user in a window displaying an Isar proof script. There are numerous difference...
متن کاملThree Years of Experience with Sledgehammer, a Practical Link between Automatic and Interactive Theorem Provers
Sledgehammer is a highly successful subsystem of Isabelle/HOL that calls automatic theorem provers to assist with interactive proof construction. It requires no user configuration: it can be invoked with a single mouse gesture at any point in a proof. It automatically finds relevant lemmas from all those currently available. An unusual aspect of its architecture is its use of unsound translatio...
متن کاملTranslating Scala Programs to Isabelle/HOL - System Description
We present a trustworthy connection between the Leon verification system and the Isabelle proof assistant. Leon is a system for verifying functional Scala programs. It uses a variety of automated theorem provers (ATPs) to check verification conditions (VCs) stemming from the input program. Isabelle, on the other hand, is an interactive theorem prover used to verify mathematical specifications u...
متن کاملA Synthesis of the Procedural and Declarative Styles of Interactive Theorem Proving
We propose a synthesis of the two proof styles of interactive theorem proving: the procedural style (where proofs are scripts of commands, like in Coq) and the declarative style (where proofs are texts in a controlled natural language, like in Isabelle/Isar). Our approach combines the advantages of the declarative style – the possibility to write formal proofs like normal mathematical text – an...
متن کاملIsar - A Generic Interpretative Approach to Readable Formal Proof Documents
We present a generic approach to readable formal proof documents, called Intelligible semi-automated reasoning (Isar). It addresses the major problem of existing interactive theorem proving systems that there is no appropriate notion of proof available that is suitable for human communication, or even just maintenance. Isar’s main aspect is its formal language for natural deduction proofs, whic...
متن کامل